Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.128
Filtrar
1.
N Engl J Med ; 390(7): 589-600, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354138

RESUMO

BACKGROUND: The CD40-CD40L costimulatory pathway regulates adaptive and innate immune responses and has been implicated in the pathogenesis of multiple sclerosis. Frexalimab is a second-generation anti-CD40L monoclonal antibody being evaluated for the treatment of multiple sclerosis. METHODS: In this phase 2, double-blind, randomized trial, we assigned, in a 4:4:1:1 ratio, participants with relapsing multiple sclerosis to receive 1200 mg of frexalimab administered intravenously every 4 weeks (with an 1800-mg loading dose), 300 mg of frexalimab administered subcutaneously every 2 weeks (with a 600-mg loading dose), or the matching placebos for each active treatment. The primary end point was the number of new gadolinium-enhancing T1-weighted lesions seen on magnetic resonance imaging at week 12 relative to week 8. Secondary end points included the number of new or enlarging T2-weighted lesions at week 12 relative to week 8, the total number of gadolinium-enhancing T1-weighted lesions at week 12, and safety. After 12 weeks, all the participants could receive open-label frexalimab. RESULTS: Of 166 participants screened, 129 were assigned to a trial group; 125 participants (97%) completed the 12-week double-blind period. The mean age of the participants was 36.6 years, 66% were women, and 30% had gadolinium-enhancing lesions at baseline. At week 12, the adjusted mean number of new gadolinium-enhancing T1-weighted lesions was 0.2 (95% confidence interval [CI], 0.1 to 0.4) in the group that received 1200 mg of frexalimab intravenously and 0.3 (95% CI, 0.1 to 0.6) in the group that received 300 mg of frexalimab subcutaneously, as compared with 1.4 (95% CI, 0.6 to 3.0) in the pooled placebo group. The rate ratios as compared with placebo were 0.11 (95% CI, 0.03 to 0.38) in the 1200-mg group and 0.21 (95% CI, 0.08 to 0.56) in the 300-mg group. Results for the secondary imaging end points were generally in the same direction as those for the primary analysis. The most common adverse events were coronavirus disease 2019 and headaches. CONCLUSIONS: In a phase 2 trial involving participants with multiple sclerosis, inhibition of CD40L with frexalimab had an effect that generally favored a greater reduction in the number of new gadolinium-enhancing T1-weighted lesions at week 12 as compared with placebo. Larger and longer trials are needed to determine the long-term efficacy and safety of frexalimab in persons with multiple sclerosis. (Funded by Sanofi; ClinicalTrials.gov number, NCT04879628.).


Assuntos
Anticorpos Monoclonais , Antígenos CD40 , Ligante de CD40 , Esclerose Múltipla Recidivante-Remitente , Adulto , Feminino , Humanos , Masculino , Ligante de CD40/antagonistas & inibidores , Ligante de CD40/imunologia , Método Duplo-Cego , Gadolínio , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/imunologia , Administração Intravenosa , Injeções Subcutâneas
2.
J Neuroimmunol ; 389: 578314, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422689

RESUMO

The presence of EBV infected B cells in postmortem multiple sclerosis (MS) brain tissue suggests immune evasion strategies. Using immunohistochemical techniques we analysed the expression of the immune checkpoint molecule PD-L1 and its receptor PD-1 in MS brains containing B cell-enriched perivascular infiltrates and meningeal follicles, a major EBV reservoir. PD-1 and PD-L1 immunoreactivities were restricted to CNS-infiltrating immune cells. PD-L1 was expressed on B cells, including EBV infected B cells, while PD-1 was expressed on many CD8+ T cells, including EBV-specific CD8+ T-cells, and fewer CD4+ T cells. PD-L1+ cells and EBV infected cells were in close contact with PD-1+ T cells. PD-L1 expressed by EBV infected B cells could favour local immune evasion leading to EBV persistence and immunopathology in the MS brain.


Assuntos
Antígeno B7-H1 , Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Antígeno B7-H1/metabolismo , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/virologia , Receptor de Morte Celular Programada 1/metabolismo
4.
Nature ; 625(7994): 321-328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200296

RESUMO

Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated1. Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2, along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment.


Assuntos
Predisposição Genética para Doença , Genoma Humano , Pradaria , Esclerose Múltipla , Humanos , Conjuntos de Dados como Assunto , Dieta/etnologia , Dieta/história , Europa (Continente)/etnologia , Predisposição Genética para Doença/história , Genética Médica , História do Século XV , História Antiga , História Medieval , Migração Humana/história , Estilo de Vida/etnologia , Estilo de Vida/história , Esclerose Múltipla/genética , Esclerose Múltipla/história , Esclerose Múltipla/imunologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/história , Doenças Neurodegenerativas/imunologia , Densidade Demográfica
5.
Brain ; 147(3): 839-848, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38123517

RESUMO

Intrathecal IgM production in multiple sclerosis is associated with a worse disease course. To investigate pathogenic relevance of autoreactive IgM in multiple sclerosis, CSF from two independent cohorts, including multiple sclerosis patients and controls, were screened for antibody binding to induced pluripotent stem cell-derived neurons and astrocytes, and a panel of CNS-related cell lines. IgM binding to a primitive neuro-ectodermal tumour cell line discriminated 10% of multiple sclerosis donors from controls. Transcriptomes of single IgM producing CSF B cells from patients with cell-binding IgM were sequenced and used to produce recombinant monoclonal antibodies for characterization and antigen identification. We produced five cell-binding recombinant IgM antibodies, of which one, cloned from an HLA-DR + plasma-like B cell, mediated antigen-dependent complement activation. Immunoprecipitation and mass spectrometry, and biochemical and transcriptome analysis of the target cells identified the iron transport scavenger protein SCARA5 as the antigen target of this antibody. Intrathecal injection of a SCARA5 antibody led to an increased T cell infiltration in an experimental autoimmune encephalomyelitis (EAE) model. CSF IgM might contribute to CNS inflammation in multiple sclerosis by binding to cell surface antigens like SCARA5 and activating complement, or by facilitating immune cell migration into the brain.


Assuntos
Encefalomielite Autoimune Experimental , Imunoglobulina M , Esclerose Múltipla , Receptores Depuradores Classe A , Animais , Humanos , Anticorpos Monoclonais , Linhagem Celular Tumoral , Imunoglobulina M/líquido cefalorraquidiano , Proteínas de Membrana Transportadoras , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/imunologia , Receptores Depuradores Classe A/imunologia
6.
Cell ; 186(26): 5705-5718.e13, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38091993

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of the CNS. Epstein-Barr virus (EBV) contributes to the MS pathogenesis because high levels of EBV EBNA386-405-specific antibodies cross react with the CNS-derived GlialCAM370-389. However, it is unclear why only some individuals with such high autoreactive antibody titers develop MS. Here, we show that autoreactive cells are eliminated by distinct immune responses, which are determined by genetic variations of the host, as well as of the infecting EBV and human cytomegalovirus (HCMV). We demonstrate that potent cytotoxic NKG2C+ and NKG2D+ natural killer (NK) cells and distinct EBV-specific T cell responses kill autoreactive GlialCAM370-389-specific cells. Furthermore, immune evasion of these autoreactive cells was induced by EBV-variant-specific upregulation of the immunomodulatory HLA-E. These defined virus and host genetic pre-dispositions are associated with an up to 260-fold increased risk of MS. Our findings thus allow the early identification of patients at risk for MS and suggest additional therapeutic options against MS.


Assuntos
Autoimunidade , Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/genética , Antígenos de Histocompatibilidade Classe I , Esclerose Múltipla/imunologia , Células Matadoras Naturais/imunologia
7.
Nature ; 619(7969): 323-331, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380766

RESUMO

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that results in significant neurodegeneration in the majority of those affected and is a common cause of chronic neurological disability in young adults1,2. Here, to provide insight into the potential mechanisms involved in progression, we conducted a genome-wide association study of the age-related MS severity score in 12,584 cases and replicated our findings in a further 9,805 cases. We identified a significant association with rs10191329 in the DYSF-ZNF638 locus, the risk allele of which is associated with a shortening in the median time to requiring a walking aid of a median of 3.7 years in homozygous carriers and with increased brainstem and cortical pathology in brain tissue. We also identified suggestive association with rs149097173 in the DNM3-PIGC locus and significant heritability enrichment in CNS tissues. Mendelian randomization analyses suggested a potential protective role for higher educational attainment. In contrast to immune-driven susceptibility3, these findings suggest a key role for CNS resilience and potentially neurocognitive reserve in determining outcome in MS.


Assuntos
Encéfalo , Reserva Cognitiva , Escolaridade , Estudo de Associação Genômica Ampla , Esclerose Múltipla , Fatores de Proteção , Humanos , Adulto Jovem , Envelhecimento , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Tronco Encefálico/imunologia , Tronco Encefálico/patologia , Tronco Encefálico/fisiopatologia , Estudos de Casos e Controles , Progressão da Doença , Homozigoto , Limitação da Mobilidade , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/psicologia , Fatores de Tempo
8.
Front Immunol ; 14: 1172993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215103

RESUMO

People identified with Black/African American or Hispanic/Latinx ethnicity are more likely to exhibit a more severe multiple sclerosis disease course relative to those who identify as White. While social determinants of health account for some of this discordant severity, investigation into contributing immunobiology remains sparse. The limited immunologic data stands in stark contrast to the volume of clinical studies describing ethnicity-associated discordant presentation, and to advancement made in our understanding of MS immunopathogenesis over the past several decades. In this perspective, we posit that humoral immune responses offer a promising avenue to better understand underpinnings of discordant MS severity among Black/African American, and Hispanic/Latinx-identifying patients.


Assuntos
Negro ou Afro-Americano , Hispânico ou Latino , Imunidade Humoral , Esclerose Múltipla , Humanos , Etnicidade , Esclerose Múltipla/imunologia , Brancos
9.
J Autoimmun ; 138: 103053, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236124

RESUMO

Hepatocyte nuclear factor 4 α (HNF4α), a transcription factor (TF) essential for embryonic development, has been recently shown to regulate the expression of inflammatory genes. To characterize HNF4a function in immunity, we measured the effect of HNF4α antagonists on immune cell responses in vitro and in vivo. HNF4α blockade reduced immune activation in vitro and disease severity in the experimental model of multiple sclerosis (MS). Network biology studies of human immune transcriptomes unraveled HNF4α together with SP1 and c-myc as master TF regulating differential expression at all MS stages. TF expression was boosted by immune cell activation, regulated by environmental MS risk factors and higher in MS immune cells compared to controls. Administration of compounds targeting TF expression or function demonstrated non-synergic, interdependent transcriptional control of CNS autoimmunity in vitro and in vivo. Collectively, we identified a coregulatory transcriptional network sustaining neuroinflammation and representing an attractive therapeutic target for MS and other inflammatory disorders.


Assuntos
Autoimunidade , Fator 4 Nuclear de Hepatócito , Esclerose Múltipla , Humanos , Autoimunidade/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Transcriptoma , Genes myc
10.
Front Immunol ; 14: 1004795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033984

RESUMO

The immune system plays a significant role in multiple sclerosis. While MS was historically thought to be T cell-mediated, multiple pieces of evidence now support the view that B cells are essential players in multiple sclerosis pathogenic processes. High-efficacy disease-modifying therapies that target the immune system have emerged over the past two decades. Anti-CD20 monoclonal antibodies selectively deplete CD20+ B and CD20+ T cells and efficiently suppress inflammatory disease activity. These monotherapies prevent relapses, reduce new or active magnetic resonance imaging brain lesions, and lessen disability progression in patients with relapsing multiple sclerosis. Rituximab, ocrelizumab, and ofatumumab are currently used in clinical practice, while phase III clinical trials for ublituximab have been recently completed. In this review, we compare the four anti-CD20 antibodies in terms of their mechanisms of action, routes of administration, immunological targets, and pharmacokinetic properties. A deeper understanding of the individual properties of these molecules in relation to their efficacy and safety profiles is critical for their use in clinical practice.


Assuntos
Antígenos CD20 , Fatores Imunológicos , Esclerose Múltipla , Humanos , Antígenos CD20/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Recidiva , Rituximab/uso terapêutico , Rituximab/farmacologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
11.
Nat Rev Neurol ; 19(5): 305-320, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059811

RESUMO

Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.


Assuntos
Esclerose Múltipla , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Humanos , Animais , Fibras Nervosas Mielinizadas , Axônios , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Ensaios Clínicos como Assunto , Ciência Translacional Biomédica
12.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835179

RESUMO

Intrathecal inflammation plays a key role in the pathogenesis of multiple sclerosis (MS). To better elucidate its relationship with peripheral inflammation, we investigated the correlation between cerebrospinal fluid (CSF) and serum levels of 61 inflammatory proteins. Paired CSF and serum samples were collected from 143 treatment-naïve MS patients at diagnosis. A customized panel of 61 inflammatory molecules was analyzed by a multiplex immunoassay. Correlations between serum and CSF expression levels for each molecule were performed by Spearman's method. The expression of sixteen CSF proteins correlated with their serum expression (p-value < 0.001): only five molecules (CXCL9, sTNFR2, IFNα2, Pentraxin-3, and TSLP) showed a Rho value >0.40, suggesting moderate CSF/serum correlation. No correlation between inflammatory serum patterns and Qalb was observed. Correlation analysis of serum expression levels of these sixteen proteins with clinical and MRI parameters pinpointed a subset of five molecules (CXCL9, sTNFR2, IFNα2, IFNß, and TSLP) negatively correlating with spinal cord lesion volume. However, following FDR correction, only the correlation of CXCL9 remained significant. Our data support the hypothesis that the intrathecal inflammation in MS only partially associates with the peripheral one, except for the expression of some immunomodulators that might have a key role in the initial MS immune response.


Assuntos
Inflamação , Esclerose Múltipla , Humanos , Biomarcadores , Inflamação/sangue , Inflamação/líquido cefalorraquidiano , Inflamação/metabolismo , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Bandas Oligoclonais/líquido cefalorraquidiano
13.
Mult Scler Relat Disord ; 70: 104488, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610359

RESUMO

BACKGROUND: Numerous studies addressed the prevalence of multiple sclerosis, but prevalence studies of NMOSD and, particularly, MOGAD are scarce. We aimed to estimate the prevalence of NMOSD and MOGAD in the city of São Paulo, based on the known prevalence of MS. METHODS: In this observational study, we determined the total number of patients with central nervous system demyelinating disease on regular follow-up in a university referral center in São Paulo, from May 2019 to May 2021 according to the diagnosis of multiple sclerosis (MS), NMOSD and MOGAD using the current diagnostic criteria for these diseases. We used the MS: NMOSD and MS: MOGAD ratios to estimate the ratio of these diseases in São Paulo, Brazil. RESULTS: We identified 968 patients with MS, 133 patients with AQP4 positive NMOSD, and 28 patients with MOGAD. We found the MS: NMOSD ratio of 7,28 and the MS: MOGAD ratio of 34,57. We estimated a prevalence of 2,1 per 100,000 inhabitants for NMOSD and of 0,4 per 100,000 inhabitants for MOGAD. CONCLUSION: The prevalence of NMOSD is high in São Paulo, but the prevalence of MOGAD is low when compared with the prevalence found in most of the studies reported to date.


Assuntos
Aquaporina 4 , Esclerose Múltipla , Neuromielite Óptica , Humanos , Anticorpos , Aquaporina 4/genética , Aquaporina 4/imunologia , Autoanticorpos , Brasil/epidemiologia , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Neuromielite Óptica/epidemiologia , Neuromielite Óptica/genética , Neuromielite Óptica/imunologia , Prevalência
14.
Exp Mol Med ; 55(1): 215-227, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36635431

RESUMO

Conflicting results on melatonin synthesis in multiple sclerosis (MS) have been reported due to variabilities in patient lifestyles, which are not considered when supplementing melatonin. Since melatonin acts through its receptors, we identified melatonin receptors in oligodendrocytes (OLs) in the corpus callosum, where demyelination occurs; the subventricular zone, where neural stem/progenitor cells (NSPCs) are located; and the choroid plexus, which functions as a blood-cerebrospinal fluid barrier. Moreover, using chimeric mice, resident macrophages were found to express melatonin receptors, whereas bone marrow-derived macrophages lost this expression in the demyelinated brain. Next, we showed that cuprizone-fed mice, which is an MS model, tended to have increased melatonin levels. While we used different approaches to alter the circadian rhythm of melatonin and cortisol, only the constant light approach increased NSPC proliferation and differentiation to oligodendrocyte precursor cells (OPCs), OPCs maturation to OLs and recruitment to the site of demyelination, the number of patrolling monocytes, and phagocytosis. In contrast, constant darkness and exogenous melatonin exacerbated these events and amplified monocyte infiltration. Therefore, melatonin should not be considered a universal remedy, as is currently claimed. Our data emphasize the importance of monitoring melatonin/cortisol oscillations in each MS patient by considering diet and lifestyle to avoid melatonin overdose.


Assuntos
Doenças Desmielinizantes , Melatonina , Monócitos , Esclerose Múltipla , Bainha de Mielina , Fagocitose , Animais , Camundongos , Diferenciação Celular , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Hidrocortisona , Melatonina/farmacologia , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Fagocitose/imunologia , Receptores de Melatonina , Bainha de Mielina/metabolismo
15.
Adv Mater ; 35(1): e2202670, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36208089

RESUMO

Herein, a tolerogenic nanovaccine is developed and tested on an animal model of multiple sclerosis. The nanovaccine is constructed to deliver the self-antigen, myelin oligodendrocyte glycoprotein (MOG) peptide, and dexamethasone on an abatacept-modified polydopamine core nanoparticle (AbaLDPN-MOG). AbaLDPN-MOG can target dendritic cells and undergo endocytosis followed by trafficking to lysosomes. AbaLDPN-MOG blocks the interaction between CD80/CD86 and CD28 in antigen-presenting cells and T cells, leading to decreased interferon gamma secretion. The subcutaneous administration of AbaLDPN-MOG to mice yields significant biodistribution to lymph nodes and, in experimental-autoimmune encephalomyelitis (EAE) model mice, increases the integrity of the myelin basic sheath and minimizes the infiltration of immune cells. EAE mice are treated with AbaLDPN-MOG before or after injection of the autoantigen, MOG. Preimmunization of AbaLDPN-MOG before the injection of MOG completely blocks the development of clinical symptoms. Early treatment with AbaLDPN-MOG at three days after injection of MOG also completely blocks the development of symptoms. Notably, treatment of EAE symptom-developed mice with AbaLDPN-MOG significantly alleviates the symptoms, indicating that the nanovaccine has therapeutic effects. Although AbaLDPN is used for MOG peptide delivery in the EAE model, the concept of AbaLDPN can be widely applied for the prevention and alleviation of other autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Encefalomielite , Glicoproteína Mielina-Oligodendrócito , Animais , Camundongos , Encefalomielite/imunologia , Encefalomielite/prevenção & controle , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Peptídeos/uso terapêutico , Distribuição Tecidual , Vacinas , Nanopartículas/uso terapêutico , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia
16.
Mult Scler Relat Disord ; 68: 104371, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36544318

RESUMO

BACKGROUND: It remains unclear how vaccine doses and combinations of vaccination and infection affect the magnitude and quality of immune responses, particularly against novel SARS-CoV-2 variants in subjects with immune-related disorders, such as people with multiple sclerosis (pwMS). Several studies have evaluated the duration of anti-SARS-CoV-2 immune protection in healthy individuals; however clinical data suggest an attenuated short-term humoral response to SARS-CoV-2 vaccines in pwMS receiving disease-modifying therapies (DMTs). METHODS: In this prospective study, we evaluated the humoral response to the third (3rd) BNT162b2 vaccine (booster) dose in a monocentric cohort of pwMS undergoing eight different DMTs, all without previous SARS-CoV-2 infection. Quantitative determination of SARS-CoV-2 IgG Spike titre was carried out by anti-SARS-CoV-2 S assay in 65 pwMS and 9 healthy controls, all without previous SARS-CoV-2 infection. Moreover, these measurements were also compared to their relative levels at 21 days (T1) and ∼6 months (T2) after the second (2nd) vaccination. RESULTS: We observed that the humoral response to the booster dose in Interferon ß-1a-, Dimethyl fumarate- and Teriflunomide-treated pwMS is comparable to healthy controls, while increased in Cladribine-treated pwMS. Additionally, the 3rd dose elicits a seroconversion in the 100% of pwMS under Fingolimod and in the 65% of those under Ocrelizumab. Moreover, multivariate regression analysis showed that treatment with Interferon ß-1a, Dimethyl fumarate and Cladribine positively associates with an increased humoral response. CONCLUSIONS: Taken together this evidence strongly indicates the importance of the booster dose to enhance SARS-CoV-2-specific immunity especially in immunocompromised subjects, such as pwMS under DMTs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Esclerose Múltipla , Humanos , Anticorpos Antivirais , Vacina BNT162 , Cladribina , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Fumarato de Dimetilo , Interferon beta-1a , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Estudos Prospectivos , SARS-CoV-2 , Vacinação/métodos
17.
Front Immunol ; 13: 946698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967385

RESUMO

Multiple sclerosis (MS) is a highly disabling, progressive neurodegenerative disease with no curative treatment available. Although significant progress has been made in understanding how MS develops, there remain aspects of disease pathogenesis that are yet to be fully elucidated. In this regard, studies have shown that dysfunctional adenosinergic signaling plays a pivotal role, as patients with MS have altered levels adenosine (ADO), adenosine receptors and proteins involved in the generation and termination of ADO signaling, such as CD39 and adenosine deaminase (ADA). We have therefore performed a literature review regarding the involvement of the adenosinergic system in the development of MS and propose mechanisms by which the modulation of this system can support drug development and repurposing.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Receptores Purinérgicos P1 , Adenosina/imunologia , Adenosina Desaminase/imunologia , Apirase/imunologia , Humanos , Esclerose Múltipla/etiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/terapia , Receptores Purinérgicos P1/imunologia , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 119(35): e2211310119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994674

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Astrocytes are the most abundant glial cells in the CNS, and their dysfunction contributes to the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Recent advances highlight the pivotal role of cellular metabolism in programming immune responses. However, the underlying immunometabolic mechanisms that drive astrocyte pathogenicity remain elusive. Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme involved in cellular redox reactions and a substrate for NAD+-dependent enzymes. Cellular NAD+ levels are dynamically controlled by synthesis and degradation, and dysregulation of this balance has been associated with inflammation and disease. Here, we demonstrate that cell-autonomous generation of NAD+ via the salvage pathway regulates astrocyte immune function. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in the salvage pathway, results in depletion of NAD+, inhibits oxidative phosphorylation, and limits astrocyte inflammatory potential. We identified CD38 as the main NADase up-regulated in reactive mouse and human astrocytes in models of neuroinflammation and MS. Genetic or pharmacological blockade of astrocyte CD38 activity augmented NAD+ levels, suppressed proinflammatory transcriptional reprogramming, impaired chemotactic potential to inflammatory monocytes, and ameliorated EAE. We found that CD38 activity is mediated via calcineurin/NFAT signaling in mouse and human reactive astrocytes. Thus, NAMPT-NAD+-CD38 circuitry in astrocytes controls their ability to meet their energy demands and drives the expression of proinflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, MS. Our results identify candidate therapeutic targets in MS.


Assuntos
ADP-Ribosil Ciclase 1 , Astrócitos , Encefalomielite Autoimune Experimental , Esclerose Múltipla , NAD , ADP-Ribosil Ciclase 1/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Autoimunidade , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Humanos , Camundongos , Esclerose Múltipla/imunologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(31): e2205042119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881799

RESUMO

Dimethyl fumarate (DMF) is an immunomodulatory treatment for multiple sclerosis (MS). Despite its wide clinical use, the mechanisms underlying clinical response are not understood. This study aimed to reveal immune markers of therapeutic response to DMF treatment in MS. For this purpose, we prospectively collected peripheral blood mononuclear cells (PBMCs) from a highly characterized cohort of 44 individuals with MS before and at 12 and 48 wk of DMF treatment. Single cells were profiled using high-dimensional mass cytometry. To capture the heterogeneity of different immune subsets, we adopted a bioinformatic multipanel approach that allowed cell population-cluster assignment of more than 50 different parameters, including lineage and activation markers as well as chemokine receptors and cytokines. Data were further analyzed in a semiunbiased fashion implementing a supervised representation learning approach to capture subtle longitudinal immune changes characteristic for therapy response. With this approach, we identified a population of memory T helper cells expressing high levels of neuroinflammatory cytokines (granulocyte-macrophage colony-stimulating factor [GM-CSF], interferon γ [IFNγ]) as well as CXCR3, whose abundance correlated with treatment response. Using spectral flow cytometry, we confirmed these findings in a second cohort of patients. Serum neurofilament light-chain levels confirmed the correlation of this immune cell signature with axonal damage. The identified cell population is expanded in peripheral blood under natalizumab treatment, substantiating a specific role in treatment response. We propose that depletion of GM-CSF-, IFNγ-, and CXCR3-expressing T helper cells is the main mechanism of action of DMF and allows monitoring of treatment response.


Assuntos
Biomarcadores Farmacológicos , Citocinas , Fumarato de Dimetilo , Imunossupressores , Esclerose Múltipla , Linfócitos T Auxiliares-Indutores , Biomarcadores Farmacológicos/metabolismo , Citocinas/metabolismo , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Interferon gama/metabolismo , Depleção Linfocítica , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Análise de Célula Única , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia
20.
Proc Natl Acad Sci U S A ; 119(24): e2117636119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671429

RESUMO

Caspase-8 functions at the crossroad of programmed cell death and inflammation. Here, using genetic approaches and the experimental autoimmune encephalomyelitis model of inflammatory demyelination, we identified a negative regulatory pathway for caspase-8 in infiltrated macrophages whereby it functions to restrain interleukin (IL)-1ß-driven autoimmune inflammation. Caspase-8 is partially activated in macrophages/microglia in active lesions of multiple sclerosis. Selective ablation of Casp8 in myeloid cells, but not microglia, exacerbated autoimmune demyelination. Heightened IL-1ß production by caspase-8-deficient macrophages underlies exacerbated activation of encephalitogenic T cells and production of GM-CSF and interferon-γ. Mechanistically, IL-1ß overproduction by primed caspase-8-deficient macrophages was mediated by RIPK1/RIPK3 through the engagement of NLRP3 inflammasome and was independent of cell death. When instructed by autoreactive CD4 T cells in the presence of antigen, caspase-8-deficient macrophages, but not their wild-type counterparts, released significant amount of IL-1ß that in turn acted through IL-1R to amplify T cell activation. Moreover, the worsened experimental autoimmune encephalomyelitis progression in myeloid Casp8 mutant mice was completely reversed when Ripk3 was simultaneously deleted. Together, these data reveal a functional link between T cell-driven autoimmunity and inflammatory IL-1ß that is negatively regulated by caspase-8, and suggest that dysregulation of the pathway may contribute to inflammatory autoimmune diseases, such as multiple sclerosis.


Assuntos
Caspase 8 , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Linfócitos T CD4-Positivos/imunologia , Caspase 1/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/imunologia , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/enzimologia , Esclerose Múltipla/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...